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was studied by Hsiao and Liu [22] who showed that its
solutions exhibit a long-time behavior governed byHyperbolic systems often have relaxation terms that give them

a partially conservative form and that lead to a long-time behavior
governed by reduced systems that are parabolic in nature. In this

­th 2 t­xxp(h) 5 0, w 5 2t­xp(h). (1.2)
article it is shown by asymptotic analysis and numerical examples
that semidiscrete high resolution methods for hyperbolic conserva-
tion laws fail to capture this asymptotic behavior unless the small The first equation above is sometimes referred to as the
relaxation rate is resolved by a fine spatial grid. We introduce a porous media equation, in which context the second plays
modification of higher order Godunov methods that possesses the the role of Darcy’s law.correct asymptotic behavior, allowing the use of coarse grids (large

A somewhat more general system with relaxation thatcell Peclet numbers). The idea is to build into the numerical scheme
we will use to illustrate the subsequent theory isthe asymptotic balances that lead to this behavior. Numerical experi-

ments on 2 3 2 systems verify our analysis. Q 1996 Academic Press, Inc.

­th 1 ­xw 5 0,
(1.3)

­tw 1 ­xp(h) 5 2(1/t)(w 2 f(h)),1. INTRODUCTION

Hyperbolic systems of partial differential equations that where t . 0 is again the relaxation time. We shall assume
arise in applications often have relaxation terms that give p9(h) . 0, whereby the system (1.3) is hyperbolic with
the system a partially conservative form and lead to a characteristic velocities of 6Ïp9(h). The long-time behav-
long-time behavior governed by a reduced system that is ior of its solutions are governed by
parabolic in nature. Such systems are found in relaxing
gas theory [8, 46], multiphase flow [15], and turbulence

­th 1 ­x f(h) 5 t­x[(p9(h) 2 f 9(h)2)­xh], (1.4a)
modeling [13, 30], where the relaxation terms describe
thermal coupling, phase coupling or turbulent kinematics, w 5 f(h) 2 t(p9(h) 2 f 9(h)2)­xh, (1.4b)
respectively. They also arise in kinetic theory [2, 5, 33, 34],
where the relaxation terms model the interaction of par- provided that the characteristic velocity f 9(h) associated
ticles. with (1.4a) when t 5 0 interlaces with those of system

One of the simplest such systems is the p-system with (1.3) as
damping:

2Ïp9(h) , f 9(h) , Ïp9(h). (1.5)
­th 1 ­xw 5 0,

(1.1)
This stability condition is a general feature of such approxi-­tw 1 ­xp(h) 5 2(1/t)w.
mations. It can be understood from several points of view.
First, from a phenomenological viewpoint, this ordering

Here the parameter t . 0 is the relaxation time for the of the velocities is consistent with causality when t 5 0
system, which is hyperbolic provided p9(h) . 0. The system in (1.4a). Second, for t . 0 this condition reflects the
can be viewed as the isentropic Euler equations in Lagran- requirement that the diffusion coefficient in (1.4a) be non-
gian form with a drag term in the momentum equation. It negative. Finally, and most fundamentally, a spatially

homogeneous equilibrium of the system (1.3) in the form
(h, w) 5 (h, f(h)) for any constant h is stable if and only1 E-mail address: jin@math.gatech.edu.

2 E-mail address: lvrmr@math.arizona.edu. if h 5 h satisfies (1.5) (see [48]). Indeed, if (1.5) is not
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satisfied then a simple linear analysis shows that some We assume that the relaxation term q(u) determines
uniquely the stable local equilibria u 5 E (v) for n (n , N)perturbations can grow at rates on the order of 1/t.

The relation between solutions of system (1.3) and those independent conserved quantities v. Consider all eigen-
values of ­uq. We define t, the relaxation time, as theof Eq. (1.4) was studied in [6, 7, 36]. A critical nondimen-

sional parameter « is the ratio of the distance a typical reciprocal of the largest eigenvalue in absolute value when
evaluated at the local equilibria u 5 E (v). The eigenvaluesound wave travels (at speed c 5 Ïp9(h)) over the relax-

ation time t to a typical gradient length L: corresponding to a local equilibrium is nonnegative when
evaluated at a local equilibrium. Let c be the absolute
value of the largest characteristic speed of the system,« 5 ct/L. (1.6)
or the largest characteristic speed evaluated at the local
equilibria (our numerical experiments show little differ-When « ! 1, the relaxation term is called stiff. In this

regime the solutions of the original system (1.3) can be ence between these two choices). One can then define the
nondimensional relaxation parameter « as in (1.6). Thisstudied by a formal asymptotic expansion in « which is

analogous to the Chapman–Enskog expansion of kinetic system becomes stiff if « ! 1. In such a regime the behavior
of the locally conserved quantity v is asymptotically gov-theory [7]. It is found that their behavior is governed by

the parabolic approximation (1.4), whereby « measures the erned by a system of convection–diffusion equations, anal-
ogous to (1.4a). There have been many theoretical investi-validity of the parabolic approximation.

This formal relationship was justified in [7]. There system gations of such systems in this regime (e.g., [6, 7, 34, 35]).
In particular, the general framework of the parabolic ap-(1.3) was considered for a fixed p(h) as t, and thereby «

defined by (1.6), becomes smaller. It was rigorously proved proximation for N 3 N systems in any spatial dimension
was laid down in [7].that if (h«, w«) is a family of solutions of (1.3) with fixed

initial data then as « tends to zero the functions h« converge In this article we are concerned with the numerical meth-
ods for hyperbolic systems with stiff relaxation terms. Weto h, the viscosity solution of
will only study semidiscrete numerical schemes, leaving the
time variable continuous. This is not because we advocate a­th 1 ­xf(h) 5 0, (1.7)
‘‘method of lines’’ approach to these problems; we do not.
But rather because that what we present will be more ofwith the same initial data. A weakly nonlinear limit was

also established to solutions of a Burgers equation derived a procedure than a prescription, and this simpler setting
allows us to expose the basic ideas more clearly. Of course,from (1.4a). More specifically, given any constant h such

that f 9(h) ? 0, a family of solutions (h«, w«) of (1.3) was as one lets the time step approach zero in a fully discrete
scheme it becomes semidiscrete; the results presented be-considered in the form
low apply to the limiting scheme. In this way our analysis
will provide constraints for every numerical scheme.h«(x, t) 5 h 1 «h̃«(«t, x 2 f 9(h)t),

(1.8) We will consider a uniform spatial grid with nodes
w«(x, t) 5 f(h) 1 « w̃«(«t, x 2 f 9(h)t), xj11/2 and a cell width Dx 5 xj11/2 2 xj21/2 . The uniformity

of the grid is not essential to our analysis but does serve
with the initial data for (h̃«, w̃«) independent of «. Then, to simplify our presentation. Given any function u, we
as « tends to zero, the functions h̃« 5 h̃«(s, y) were shown denote its nodal values by uj11/2 5 u(xj11/2) and its cell-
to converge to h̃ 5 h̃(s, y), the solution of the Burgers average values by
equation

uj 5
1

Dx
Exj11/2

xj21/2

u dx. (1.11)­sh̃ 1 f 0(h)h̃­yh̃ 5 (p9(h) 2 f 9(h)2)­yyh̃, (1.9)

with the same initial data. The relationship between the By averaging the conservation law (1.10) over the jth cell
rigorous limit and the claimed long-time behavior of solu- one obtains
tions of (1.3) is seen from the fact that (1.9) is the formal
long-time/weakly nonlinear approximation of (1.4a) that
is consistent with the scalings in (1.8). Analogs of these ­tuj 1

F(uj11/2) 2 F(uj21/2)
Dx

5 qj , (1.12)
results were established in [7] for the general class of 2 3 2
systems that we will treat in Section 4.

where the cell-average source is defined byIn general an N 3 N hyperbolic system of conservation
laws with relaxation terms has the form

qj 5
1

Dx
Exj11/2

xj21/2

q(u) dx.
­tu 1 ­x F(u) 5 q(u). (1.10)
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Now let U denote a numerical approximation to the cell- been studied without specifically addressing the issue of
stiff relaxation.averaged values of u; we suppose that U satisfies a spatial

discretization of (1.10) in the conservative form In the absence of lower order relaxation terms, these
systems are just systems of conservation laws and one could
employ a higher order Godunov [44, 10, 31, 21] type

­tUj 1
Fj11/2 2 Fj21/2

Dx
5 Qj . (1.13) scheme to evaluate the fluxes. These schemes properly

capture the discontinuous features of the solutions. How-
ever, when the relaxation becomes stiff, it is computation-A discretization is then specified by relating the nodal flux
ally impractical to spatially, as well as temporally, resolvevalues Fj11/2 and the cell-average source Qj to the cell-
the small relaxation scale. Therefore, it is desirous to en-averaged values Uj in accordance with (1.12) and (1.13).
sure that the scheme properly captures the parabolic be-The central issue in numerical simulation of a stiff relax-
havior even when Pe @ 1. An example of such numericalation system is how well the discretization resolves the
schemes arises in linear transport theory, where the densitysmall relaxation scale. The spatial resolution of a given
of particles undergoing collisions with a background me-solution of a scheme is measured by the smallness of the
dium will solve the diffusion equation in the limit of van-nondimensional parameter
ishing mean free path [28, 29]. In this case much progress
has been made in developing schemes that incorporate

d 5 Dx/L. (1.14) boundary layers and material interfaces [17, 25, 26]. How-
ever, little attention has been given to this problem for

We will show that, in order to study the long-time accuracy the case of genuinely nonlinear systems; in such cases the
of a scheme like (1.13), it is natural to introduce a second difficulties of properly capturing the development and evo-
nondimensional parameter, namely, the cell Peclet number lution of discontinuities complicates the picture.
(or cell Reynolds number). The cell Peclet number Pe Our first objective in this article is to show through
measures the spatial resolution of the relaxation scale and asymptotic analysis and numerical experiments that, in the
is defined as presence of stiff relaxation terms, most shock-capturing

schemes fail to capture the proper parabolic behavior when
Pe @ 1. Indeed, by considering only semidiscrete schemesPe ; d

«
5

Dx
ct

. (1.15)
we will show that this difficulty is one of spatial, as well
as temporal, resolution.

Our second objective in this article is to develop semidis-A grid will be called coarse (relative to the relaxation scale)
when Pe @ 1, fine if Pe ! 1, and intermediate otherwise. crete numerical schemes for such systems that are modern

high-order shock-capturing schemes, yet that will handleThe development of numerical schemes to solve hyper-
bolic systems with source terms has been an active area correctly the difficulties involving lower order relaxation

terms. A good discretization meeting this criterion wouldof research in the past two decades (e.g., [14, 35, 38–41,
45]), most of which have considered the importance of the allow the use of a coarse grid to resolve spatial features

and ultimately allow the implementation of an implicitsteady state balance in devising numerical solutions. To
our knowledge there has been no work that uses the asymp- temporal scheme to enable one to economically compute

the longer time scales of interest. We show that such spatialtotics that lead from the original system to the reduced
parabolic system, either as a guide in deriving a numerical discretizations can be realized by properly modifying their

numerical fluxes. The main idea we utilize is to simply buildmethod, or as a tool in analyzing the behavior of these
numerical methods. Of course, such an approach is re- the proper asymptotic balances into the spatial difference

scheme. We began such an investigation in [23]. In particu-stricted to systems that possess such or similar asymptotic
regimes. Other early literature studied stiff source prob- lar, in a spirit close to the idea of modeling the flow as

piecewise steady [14, 40, 45], a semidiscrete numericallems in reactive flows, where an incorrect numerical shock
speed was found when the reaction time scale « was not scheme will be said to have the correct parabolic behavior

if the asymptotics that lead from the hyperbolic systemresolved numerically [1, 9, 11, 12, 18, 32]. These works
focused on source terms that take on a more complicated to the parabolic approximation in continuous space are

mimicked in discrete space. That is to say, as Pe R y, theform than those considered in this article (for example,
exhibiting multiple equilibria, or the characteristic speeds numerical scheme will behave asymptotically as a good

discretization of the parabolic system.of the original system and the local equilibrium system do
not interlace), and the resulting long-time behavior can In Section 2 we analyze the linear telegraph equations

to show that higher order Godunov schemes are usuallybe quite different. Also related to our work are those of
Harabetian’s [19, 20], in which the dissipative effects of too dissipative to capture the correct parabolic behavior

when Pe @ 1. More specifically, we show that in this regime,numerical schemes for viscous hyperbolic systems have
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these schemes introduce numerical dissipation that over- This behavior can also be illustrated explicitly using
Fourier modes. Note thatwhelms the physical dissipation. We compare such a behav-

ior to the behavior of those schemes that do take into
account the stiff source term in the approximation. These h(t, x) 5 ĥe2lt1ijx, w(t, x) 5 ŵe2lt1ijx

include the piecewise steady approximation and a modified
upwind scheme, and we will show that they capture the

will solve (2.1) for a nondimensional wavenumber j, pro-
proper parabolic behavior even when Pe @ 1.

vided l satisfies
In Section 3 we examine the general 2 3 2 p-system

(1.3), where the long-term behavior is governed by a con-
vection–diffusion equation. Here the presence of convec- l 5 l6 ; 1

2«
6

1
2«

Ï1 2 4«2j2,
tion in the long-time approximation complicates the pic-
ture, and upwind schemes may become excessively
diffusive when Pe @ 1. We will introduce a new numerical and ijŵ6 5 l6ĥ6 . As « tends to zero, while holding j fixed,
flux based on higher order Godunov methods that achieve these relations become
two goals. First, it eliminates the excessive numerical dissi-
pation that arises in these schemes when Pe @ 1. Second, l1 5 1/« 1 O(«), ĥ1 5 2i«jŵ1 1 O(«3 );

(2.3)solutions of the resulting scheme possess a long-time be-
l2 5 «j2 1 O(«3 ), ŵ2 5 2i«jĥ2 1 O(«3 ).havior that is governed by Godunov schemes of the same

order for the correct parabolic equation (1.4) when Pe @ 1.
In regimes where the long-time hyperbolic behavior is im- One can see that the l1 mode decays rapidly to zero as t
portant, such schemes capture the nearly discontinuous increases while the l2 mode corresponds to the parabolic
phenomena associated with the corresponding nonlinear behavior described by (2.2).
convection term. In regimes where the parabolic behavior The discretization (1.13) applied to the telegraph equa-
becomes significant, these schemes also capture the dissi- tions (2.1) yields
pative nature. Numerical experiments show that these
schemes achieve good results on coarse grids.

­tHj 1
Wj11/2 2 Wj21/2

d
5 0,

(2.4)
In Section 4 we show how the same ideas can be applied

when treating more general 2 3 2 systems. These schemes
are then illustrated with numerical experiments using the

­tWj 1
Hj11/2 2 Hj21/2

d
5 2

1
«

Wj ,idealized river equations. Finally, in Section 5 we make
some concluding remarks where, among other things, we
address the relevance of this work to temporally discrete where d is the nondimensional grid size defined in (1.14).
schemes. While our analysis and numerical experiments In the next five subsections, the numerical fluxes Hj11/2will be performed on 2 3 2 systems, it is straightforward and Wj11/2 will be determined in terms of Hj and Wj by
to extend our results to N 3 N systems of the form (1.10). five different upwind difference schemes.

2. DISSIPATION: A LINEAR MODEL
2.2. The Upwind Scheme

2.1. The Model By adding and subtracting the two equations in (2.1),
one easily finds the diagonalized systemIn this section we consider an illustrative nondimen-

sional linear model. When p(h) 5 h and t 5 « in system
(1.1), it becomes ­t(w 1 h) 1 ­x(w 1 h) 5 2(1/«)w,

(2.5)
­t(w 2 h) 2 ­x(w 2 h) 5 (1/«)w.­th 1 ­xw 5 0,

(2.1)
­tw 1 ­xh 5 2(1/«)w,

The quantities w 6 h move with velocities 61, respectively,
and locally relax toward their average value. They wouldwhich are also known as the telegraph equations [27]. This
be the Riemann invariants of system (2.1) in the absencesystem has characteristic speeds 61. Accordingly, its solu-
of the relaxation term (« 5 y).tions exhibit an approximate parabolic behavior (1.2) gov-

To determine the nodal values Hj11/2 and Wj11/2 , the so-erned by
called upwind scheme assumes that the solution is
piecewise constant and then selects the values of w 6 h­th 2 «­xxh 5 0, w 5 2«­xh. (2.2)
from the direction ‘‘upwind’’ of their respective character-
istic velocities. Specifically, it selectsHere h approximately satisfies a linear heat equation.
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(W 1 H)j11/2 5 (W 1 H)j ,
(2.6)

In order to have the correct long-time behavior, it is es-
sential that Eq. (2.10) be an accurate approximation of

(W 2 H)j11/2 5 (W 2 H)j11 ,
the first equation in (2.2). This will be the case only if
Pe 5 d/« ! 1; i.e., the grid is fine. However, if either Pe p 1

which gives the nodal values or Pe @ 1 then the numerical dissipation rate of order d
will either be comparable or dominate the physical dissipa-
tion of order «. In either case, the numerical solution willHj11/2 5

Hj 1 Hj11

2
2

Wj11 2 Wj

2
,

(2.7) dissipate faster than the physical one, dissipating even
faster as the grid coarsens. Thus, for intermediate or coarse

Wj11/2 5 2
Hj11 2 Hj

2
1

Wj 1 Wj11

2
. grids the upwind scheme will not give the correct parabolic

behavior for this problem.

The values of Hj21/2 and Wj21/2 are obtained simply by
2.3. The van Leer Schemetranslating j to j 2 1 in (2.7). The use of (2.7) in the discrete

equation (2.4) results in the scheme In order to derive a higher order numerical scheme,
van Leer [44] used piecewise linear functions to interpolate
the values of the cell-edge Uj11/2 from the cell-center Uj .­tHj 2

Hj11 2 2Hj 1 Hj21

2d
1

Wj11 2 Wj21

2d
5 0,

(2.8)
For the scalar linear advection equation,

­tWj 2
Wj11 2 2Wj 1 Wj21

2d
1

Hj11 2 Hj21

2d
5 2

1
«

Wj . ­tu 1 a­xu 5 0,

the scheme is as follows. Suppose that each Uj is interpretedThe modified equations [47] corresponding to this
as the cell-averaged value of u over the jth cell. Approxi-scheme are
mate u by a piecewise linear function that over x in the
jth cell [xj21/2 , xj11/2 ] takes the form

­th 1 ­xw 5
d
2

­xx h 2
d2

6
­xxx w,

Uj(x) 5 Uj 1 mj(x 2 xj ), (2.11)
­tw 1 ­x h 5 2

1
«

w 1
d
2

­xx w 2
d2

6
­xxx h.

where xj 5 As(xj21/2 1 xj11/2) is the midpoint of the cell, so
that the average of Uj(x) over the jth cell is Uj . If theThese show the first-order nature of the upwind scheme
unknown mj is chosen by requiring that the average of(2.8) for fixed «.
Uj(x) over either the ( j 2 1)th or the ( j 1 1)th cell to beThe ‘‘parabolic’’ behavior of this scheme is obtained in
Uj21 or Uj11 , respectively, then in the former case it takesthe same fashion as going from (2.1) to (2.2), by a formal
the valueasymptotic expansion for small « (while holding d fixed).

The second equation of (2.8) gives

mj21/2 5
Uj 2 Uj21

d
,

Wj 5 2«
Hj11 2 Hj21

2d
1 O(«2).

while in the latter case it takes the value
After substituting this into the first equation of (2.8) and
dropping the O(«2) terms one obtains

mj11/2 5
Uj11 2 Uj

d
.

­tHj 2
Hj11 2 2Hj 1 Hj21

2d
2 «

Hj12 2 2Hj 1 Hj22

(2d)2 5 0. (2.9)
For uniform grids a natural candidate for mj is

A Fourier analysis of the upwind scheme (2.8) shows that
only long wavelength modes will survive to be governed mj 5

mj21/2 1 mj11/2

2
5

Uj11 2 Uj21

2d
, (2.12)

by (2.9). Hence, the whole story of the long-time behavior
will be told by the modified equation corresponding to
(2.9), which is which is a second-order approximation to the slope of u

at xj . In order to preserve the monotonicity of the solution
we choose the numerical slope mj by the so-called flux-

­th 2 «­xx h 5
d
2

­xx h. (2.10)
limited modification of mj as
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This shows the second-order accuracy of the van Leer
scheme away from local extrema of w 6 h for the telegraph

mj 5 5
0, if mj21/2mj11/2 # 0,

mj min H2
mj21/2

mj
, 2

mj11/2

mj
, 1J , otherwise.

equations (2.1) while holding « fixed.
The behavior of this scheme for small « while holding(2.13)

d fixed is as follows. By assuming only long wavelengths
survive and again avoiding local extrema, the flux-limiting

One then defines the nodal values to be the upwind value (2.13) can be neglected and (2.16b) gives
of this piecewise linear interpolant, which are given by

Wj 5 2«
2Hj12 1 6Hj11 2 6Hj21 1 Hj22

8d
1 O(«2).

Uj11/2 5 5Uj (xj11/2), if a . 0;

Uj11(xj11/2), if a , 0.
(2.14)

After substituting this into (2.16a) and dropping the O(«2)
terms, one finds

For nonlinear scalar equations one generalizes (2.14) by
setting Uj11/2 equal to the value along x 5 xj11/2 of the
solution of the Riemann problem with left and right data ­tHj 1

Hj12 2 4Hj11 1 6Hj 2 4Hj21 1 Hj22

8dgiven by Uj (xj11/2) and Uj11(xj11/2), respectively. This
method extends to systems by the local field-by-field char-

2 «
1

(8d)2 [Hj14 2 12Hj13 1 36Hj12
(2.18)acteristic decomposition.

For the telegraph equations (2.1) the above procedure
1 12Hj11 2 74Hj 1 12Hj21 1 36Hj22is applied to each component of the diagonalized system

(2.5) to obtain 2 12Hj23 1 Hj24 ] 5 0.

(W 1 H)j11/2 5 Wj 1 Hj 1 m1
j (xj11/2 2 xj ),

(2.15) The modified equation corresponding to (2.18) is
(W 2 H)j11/2 5 Wj11 2 Hj11 1 m2

j11(xj11/2 2 xj11),

­th 2 «­xx h 5 2
d3

8
­xxxx h. (2.19)

where m6
j is the slope given by (2.13) corresponding to the

quantities W 6 H. If the solution is resolved by the grid
then away from local extrema of w 6 h the flux-limiters This shows a numerical dissipation that is third order in
do not take effect and the slope takes the value mj of (2.12) d, in sharp contrast to the upwind case (2.10), which has
corresponding to W 6 H. Consequently, solving (2.15) for a first-order numerical dissipation. The van Leer scheme
the nodal quantities and substituting the result into the will have the correct parabolic behavior when uju2d3 ! «,
discrete equation (2.4) leads to where j is the wave number. However, when uju2d3 @ «

the numerical dissipation will dominate the physical dissi-
pation of order «. Hence, the van Leer scheme does not

­tHj 1
Hj12 2 4Hj11 1 6Hj 2 4Hj21 1 Hj22

8d give the correct parabolic behavior in this regime.

2.4. The Piecewise Parabolic Method (PPM)
1

2Wj12 1 6Wj11 2 6Wj21 1 Wj22

8d
5 0, (2.16a)

While the van Leer scheme uses piecewise linear func-
tions to interpolate values for Uj11/2 from the cell-average

­tWj 1
2Hj12 1 6Hj11 2 6Hj21 1 Hj22

8d values uj , the PPM scheme uses piecewise parabolic func-
tions [10]. Specifically, by approximating u with a piecewise
parabolic function that for x in the j th cell [xj21/2 , xj11/2 ]1

Wj12 2 4Wj11 1 6Wj 2 4Wj21 1 Wj22

8d
5 2

1
«

Wj .

(2.16b)
takes the form

Uj(x) 5 Uj 1 mj(x 2 xj ) 1 aj [(x 2 xj )2 2 aQsd2 ].
The modified equations corresponding to (2.16) are

Here Uj(x) is defined such that its average over the j th
cell equals Uj . Both mj and aj can be determined by requir-­th 1 ­xw 5

d2

2
­xxx w 2

d3

8
­xxxx h,

(2.17)
ing that the average of Uj(x) over ( j 2 1)th and ( j 1 1)th
cells be Uj21 and Uj11 , respectively. For a uniform grid

­tw 1 ­xh 5 2
1
«

w 1
d2

2
­xxx h 2

d3

8
­xxxx w.

these conditions give
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than the van Leer. However, the dissipation is of the same
mj 5

Uj11 2 Uj21

2d
, aj 5

Uj11 2 2Uj 1 Uj21

2d2 . (2.20) order as that of van Leer, although with a slightly
smaller coefficient.

The behavior of this scheme for small « while holdingHigher order formulas are often used to construct mj and
d fixed is as follows. Upon assuming only long wave-aj [10], but Eqs. (2.20) are sufficient to convey the general
lengths survive, the flux-limiting can be neglected andbehavior of many PPM schemes. Just as for the van Leer
Eq. (2.22b) givesscheme, the monotonicity and convexity of the solution

can be preserved by applying constraints on mj and aj . We
choose slope and convexity limiters for the PPM scheme

Wj 5 2«
2Hj12 1 8Hj11 2 8Hj21 1 Hj22

12d
1 O(«2 ),that accommodate local extrema without sacrificing accu-

racy and, in so doing, we adopt a bit of the ENO view-
point [21]. which when substituted into (2.22a) and dropping O(«2)

For the telegraph equations (2.1) the above procedure terms yields
is applied to each member of the diagonalized system (2.5)
to obtain

­tHj 1
Hj12 2 4Hj11 1 6Hj 2 4Hj21 1 Hj22

12d
(W 1 H)j11/2 5 Wj 1 Hj 1 m1

j (xj11/2 2 xj )

2 «
1

(12d)2 [Hj14 2 16Hj13 1 64Hj121 a1
j [(xj11/2 2 xj )2 2 aQsd2 ],

(2.21)
(W 2 H)j11/2 5 Wj11 2 Hj11 1 m2

j11(xj11/2 2 xj11)
1 16Hj11 2 130Hj 1 16Hj21 1 64Hj22

1 a2
j11[(xj11/2 2 xj11)2 2 aQsd2 ],

2 16Hj23 1 Hj24 ] 5 0.

where the superscripts 1 and 2 on m and a are associated
The modified equation corresponding to this discretizationwith quantities W 1 H and W 2 H, respectively. If the
of the heat equation issolution resolved by the grid then the flux-limiters do

not take effect and m6
j and a6

j are defined by (2.20) with
U 5 W 6 H. Consequently, solving (2.21) for Hj11/2 and ­th 2 «­xx h 5 2

d3

12
­xxxx h. (2.24)

Wj11/2 and inserting them into the conservation form
(2.4) gives

This shows a numerical dissipation that is third order in
d. Although the PPM scheme is third order by (2.23) while

­tHj 1
Hj12 2 4Hj11 1 6Hj 2 4Hj21 1 Hj22

12d the van Leer scheme is second order by (2.17), compar-
ing (2.19) with (2.24) shows the long-time behavior of
both methods to be accurate to third order. Because the1

2Wj12 1 8Wj11 2 8Wj21 1 Wj22

12d
5 0, (2.22a)

numerical dissipation coefficient of the PPM scheme is
smaller than that of the van Leer scheme, one may expect
that the PPM scheme is slightly less dissipative than the­tWj 1

Wj12 2 4Wj11 1 6Wj 2 4Wj21 1 Wj22

12d van Leer scheme. Just as with the van Leer scheme, when
uju2d3 @ « the numerical dissipation will dominate the physi-

1
2Hj12 1 8Hj11 2 8Hj21 1 Hj22

12d
5 2

1
«

Wj . (2.22b) cal dissipation of order «. Hence, the PPM scheme also
does not give the correct long-time behavior in this regime.

The modified equations corresponding to this scheme are
2.5. The Piecewise Steady Approximation

A particularly effective way to compute the steady state
­th 1 ­xw 5

d3

12
­xxxx h 1

d4

30
­xxxxx w,

(2.23)
solution of hyperbolic conservation laws with source terms
has been to use piecewise steady interpolants over each

­tw 1 ­xh 5 2
1
«

w 2
d3

12
­xxxx w 1

d4

30
­xxxxx h. cell rather than the piecewise constant interpolants of the

upwind scheme [14, 40, 45]. A steady state for the telegraph
equations written in the diagonalized form (2.5) satisfiesThis shows the third-order accuracy of this PPM scheme

for the telegraph equations (2.1) while holding « fixed,
which is, not unexpectedly, one order better than for the

­x(w 6 h) 5 7
1
«

w. (2.25)
van Leer scheme. This shows that the PPM is less dispersive
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If, instead of using the van Leer slope (2.13), one uses i
d

sin(jd) S1 2
d

2«
D Ŵ6 5 S2

d
sin2 Sjd

2 D2 L6D Ĥ6 .the slope from this steady state equation in the van Leer
interpolant (2.11), the upwind determination of the nodal
values (2.14) selects As « tends to 0 while holding j fixed, one sees that

(W 1 H)j11/2 5 Wj 1 Hj 2
d

2«
Wj ,

L1 5
4
d

sin2 Sjd
2 D1

1
«

cos2 Sjd
2 D1 O(«),

(2.27)
(W 2 H)j11/2 5 Wj11 2 Hj11 2

d
2«

Wj11 ,
L2 5 « SS2

dD2

sin2 Sjd
2 D1 S4

dD2 sin4(jd/2)
cos2(jd/2)D1 O(«2 ).

which yields
Clearly the parabolic behavior of the scheme can be ob-
served by the consistency between L2 in (2.27) and l2 in

Hj11/2 5
Hj 1 Hj11

2
2 S1 2

d
2«
DWj11 2 Wj

2
, (2.3). Thus the piecewise steady approximation has the

correct parabolic behavior.
In the intermediate regime, when « p d, one can also

Wj11/2 5 2
Hj11 2 Hj

2
1 S1 2

d
2«
DWj 1 Wj11

2
. show that the piecewise steady approximation also approx-

imates the equilibrium equation accurately. Use d 5 «Pe
for fixed Pe. By applying this in (2.26), one can obtain theWith this flux, the discrete equation (2.4) gives the scheme
following modified equations

­tHj 2
Hj11 2 2Hj 1 Hj21

2d ­th 1 S1 2
Pe
2 D ­xw 2

d
2

­xx h 5 0, (2.28a)

1 S1 2
d

2«
DWj11 2 Wj21

2d
5 0, (2.26a)

­tw 1 ­xh 2
d
2 S1 2

Pe
2 D ­xxw 5 2

1
«

w. (2.28b)

­tWj 2 S1 2
d

2«
DWj11 2 2Wj 1 Wj21

2d As « R 0, (2.28b) gives w 5 2«­xh 1 O(«2), which applied
to (2.28a) gives

1
Hj11 2 Hj21

2d
5 2

1
«

Wj . (2.26b)

­th 2 « S1 2
Pe
2 D ­xxh 2

d
2

­xxh 5 0. (2.29)
The steady state solution of this finite difference system is
clearly a second-order approximation of the steady state

Equation (2.29) clearly recovers (2.2) since d 5 «Pe. Thus,equation (2.25).
in the intermediate regime the piecewise steady approxi-Although one can again use the asymptotic analysis com-
mation also captures the correct parabolic behavior givenbined with the modified analysis described above to study
by the heat equation (2.2).the parabolic behavior of this scheme, which turns out to

be rather lengthy in this case, it is more convenient to
2.6. A Modified Upwind Schemeemploy the discrete Fourier analysis here. Upon substi-

tuting In this subsection we show that upwind schemes can
be modified in another way so as to capture the proper

Hj 5 Ĥje2Lt1ij jd, Wj 5 Ŵje2Lt1ij jd
parabolic behavior. The idea is again to build into the
numerical schemes the asymptotics that lead from the hy-

into (2.26), one finds perbolic system to the parabolic equation, similar to the
piecewise steady approximation, but in an implicit way.
Here we implement our idea by modifying the basic upwind

L 5 L6 ; 2
d

sin2Sjd
2 D1

1
2«

cos2Sjd
2 D scheme and leave the modification of higher order Godu-

nov schemes to the next two sections, where more general
nonlinear 2 3 2 systems are treated.6

1
2«

cos2Sjd
2 D!1 1 «

8
d

tan2Sjd
2 D2 «2S4

dD2

tan2Sjd
2 D,

Note that the asymptotic balance that leads from the
hyperbolic telegraph equations (2.1) to the heat equation
in (2.2) isand
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­xh 5 2 (1/«)w. (2.30)
­tHj 2 «

Hj11 2 2Hj 1 Hj21

d2 5 O S«2

d D.

If « is small and w is at least order « then the gradient of
h may not be neglected. However, the upwind scheme (2.6) This is an approximation to the equilibrium heat equation
ignored this variation in h, approximating it as a constant (2.2) with an accuracy of O(«2/d). Thus the modified up-
throughout each cell. A first cut at incorporating this wind scheme has the correct parabolic behavior with a
variation into the scheme may be made by approximat- coarse grid. One may expect that coarse grids independent
ing Hj and Hj11 by a Taylor expansion about the node of « can be used to capture the parabolic behavior de-
x 5 xj11/2 , which, using (2.30), leads to scribed by (2.2).

In the intermediate regime, when « p d, one can also
show that the modified equation approximates the equilib-Hj p Hj11/2 1

d
2«

Wj11/2 ,

(2.31)
rium equation accurately. Let d 5 « Pe for fixed Pe. By
applying this in (2.33), one sees that (2.33) approximates

Hj11 p Hj11/2 2
d
2«

Wj11/2 .

­th 1
2

2 1 Pe
­xw 2

« Pe
2 1 Pe

­xx h 5 0, (2.34a)
Here we expand the cell-average values in terms of the
nodal values, a critical difference from the piecewise steady

­tw 1 ­x h 2
d
2

­xx w 5 2
1
«

w. (2.34b)approximation, which does the opposite. By using (2.31),
the upwind selection becomes

As « R 0, (2.34b) gives w 5 2« ­xh 1 O(«2 ), which applied
to (2.34a) givesWj 1 Hj 5 Wj11/2 1 Hj11/2 1

d
2«

Wj11/2 , (2.32a)

­th 2
2«

2 1 Pe
­xx h 2

« Pe
2 1 Pe

­xx h 5 O(«2 ),Wj11 2 Hj11 5 Wj11/2 2 Hj11/2 1
d
2«

Wj11/2 . (2.32b)

orUpon solving (2.32) for Hj11/2 and Wj11/2 and substituting
them into the conservation form (2.4) gives the modified

­th 2 « ­xx h 5 O(«2 ).upwind scheme

Thus, in the intermediate regime the modified upwind
­tHj 2

Hj11 2 2Hj 1 Hj21

2d 1 d2/«
1

Wj11 2 Wj21

2d 1 d2/«
5 0, (2.33a) scheme again captures the correct parabolic behavior given

by the heat equation (2.2).

­tWj 2
Wj11 2 2Wj 1 Wj21

2d
1

Hj11 2 Hj21

2d
5 2

1
«

Wj .

(2.33b)
2.7. Numerical Results

In all the numerical examples presented in this article
we have always chosen Dt ! t so that it is small enough that

The modified equations corresponding to this scheme are our analysis will not be affected by the error introduced by
the time discretization. We will only present the numerical
results for H. The behavior of W is similar under the­th 1

2d
2d 1 d2/«

­xw 2
d2

2d 1 d2/«
­xx h 5 0,

resolved time discretization. Fully discrete numerical
schemes are studied in a forthcoming paper [24].

­tw 1 ­xh 2
d
2

­xx w 5 2
1
«

w. Here we test the above five schemes for the linear tele-
graph equations (2.1), with c 5 1, over the periodic interval
0 # x # 2 with initial condition h(0, x) 5 2 1 sin(fx) and

For fixed «, this is clearly a first-order discretization of the w(0, x) 5 20.1. We take « 5 0.01. Figure 1 shows the
telegraph equations (2.1). results of the ‘‘exact’’ solution and the numerical solutions

If « is small, then for fixed d, Equation (2.33b) gives computed with the five schemes (for short, we use UW for
the upwind scheme, vL for the van Leer scheme, PPM
for the PPM method, PS for the piecewise steady approxi-Wj 5 2«

Hj11 2 Hj21

2d
1 O(«2 ),

mations, and MUW for the modified upwind scheme)
discussed earlier. The ‘‘exact’’ solution is computed by
PPM on a fine grid with d 5 0.001, corresponding towhile (2.33a) becomes
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intermediate regime. The MUW and PS give accurate
numerical solutions in this regime, as predicted by our
analysis. In Fig. 1b, we plot the numerical solutions for all
five schemes discussed earlier in the coarse regimes. All
except the MUW and PS give bad results, showing the
domination of the numerical dissipation on these coarse
grids. One can also see that UW gives a much worse result
than vL and PPM; PPM gives slightly better result than
vL; and MUW is slightly better than PS. These numerical
results all agree with our results using the asymptotic analy-
sis and the modified equation analysis.

3. CONVECTION WITH DIFFUSION: A MODEL

In general, solutions of hyperbolic systems with stiff
relaxation terms exhibit long-time behavior governed by
a convection–diffusion system, not just a diffusion system
such as was studied in the last section. As an illustrative
model we consider the 2 3 2 p-system with relaxation (1.3):

­th 1 ­xw 5 0, (3.1a)

­tw 1 ­x p(h) 5 2(1/t)(w 2 f(h)). (3.1b)

Provided that the stability condition (1.5) is satisfied, the
long-time behavior of its solution is governed by (1.4):

­th 1 ­x f(h) 5 t­x [(p9(h) 2 f 9(h)2)­xh], (3.2a)

w 5 f(h) 2 t(p9(h) 2 f 9(h)2)­x h. (3.2b)

When system (3.1) is compared with the telegraph equa-
tions (2.1) of the last section one sees that, in addition
to the obvious new feature of nonlinearity, there is the

FIG. 1. Numerical solutions of Eqs. (2.1) at t 5 2 for « 5 0.01. Our appearance of a convective term in the parabolic equation
‘‘exact’’ solution (the solid line) is obtained by PPM with d 5 0.001. (a) (3.2a). Indeed, this term gives the leading order dynamics
Numerical solutions are obtained with an intermediate grid size d 5 0.01 of solutions of the system (3.1) once the local equilibrium
(Pe 5 1) and plotted by dashed line for UW, ‘‘1’’ for PS, and ‘‘o’’ for

w 5 f(h) is approximately established after a time scaleMUW, respectively. (b) Numerical solutions are obtained with a coarse
of t. The hyperbolic nature of the convective term in (3.2a)grid size d 5 0.1 (Pe 5 10) and plotted by dashed line for UW, ‘‘–?’’ for

vL, ‘‘*’’ for PPM, ‘‘1’’ for PS, and ‘‘o’’ for MUW, respectively. gives rise to solutions that may contain large gradients
(viscous shocks). It is clear that any numerical scheme
for (3.1) that hopes to compute into such regimes must
give a good discretization of this term. The diffusivePe 5 0.1. The coarse grids use d 5 0.1 (Pe 5 10). We also
term in (3.2a) becomes important over time scales that aretake d 5 « 5 0.01 (Pe 5 1) to compute the problem in
O(1/«), compared to those associated with the convectivethe intermediate regime. We output the solutions at t 5 2.
term. The numerical scheme for (3.1) must therefore be-In the intermediate regime vL and PPM work fine, in
come a good discretization of that term, too, if one hopesagreement with the fact that their numerical dissipations
to compute solutions of (3.1) accurately for very long times.are of order d3, much smaller than the physical dissipation

of order «. Thus we only plot the ‘‘exact’’ solution, the
3.1. Discrete Long-Time Behavior: A Linear Model

solutions of UW, PS, and MUW in Fig. 1a. It can be seen
that UW decays at an unphysical rate. This agrees with In Section 2 we have analyzed the long-time, parabolic

behavior of several numerical schemes. When similar anal-our earlier analysis in which it is shown that the upwind
scheme has a numerical dissipation of order d, which is ysis is performed for the discretization of (3.1), it is also

necessary to understand how the discretization approxi-in the same order as the physical dissipation rate in the
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mates the convection term ­x f(h) when passing to the para-
1 t(c2 2 b2)

1
8 Dx 2 [Hj14 2 12Hj13 1 36Hj12bolic description. This will first be illustrated for the lin-

ear model
1 12Hj11 2 74Hj 1 12Hj21 1 36Hj22

­th 1 ­xw 5 0,
(3.3)

2 12Hj23 1 Hj24 ].

(3.7)

­tw 1 c2­x h 5 2(1/t)(w 2 bh),
This is a second-order approximation to the parabolic
equation (3.4). This long-time numerical approximation,where we assume that t . 0 and 0 , ubu , c. The long-
like the upwind scheme, is more dissipative than the sec-time behavior of its solutions is governed by the linear
ond-order upwind (van Leer) scheme applied directly toconvection–diffusion equation
(3.4).

The long-time behavior associated with the PPM scheme­th 1 b­x h 5 t(c2 2 b2)­xx h. (3.4)
for (3.3) is governed by

Of course, our observations will naturally apply to the fully
nonlinear model (3.1).

­tHj 1 b
2Hj12 1 8Hj11 2 8Hj21 1 Hj22

12 DxWhen the upwind scheme (2.7) is applied to (3.3) and
analyzed as Pe R y as we did in the last section, the long-
time behavior of its solutions is found to be governed by 5 2c

Hj12 2 4Hj11 1 6Hj 2 4Hj21 1 Hj22

12 Dx

­tHj 1 b
Hj11 2 Hj21

2 Dx
5 c

Hj11 2 2Hj 1 Hj21

2 Dx 1 t(c2 2 b2)
1

12 Dx 2 [Hj14 2 16Hj13 1 64Hj12

1 16Hj11 2 130Hj 1 16Hj21 1 64Hj221 t(c2 2 b2)
Hj12 2 2Hj 1 Hj22

(2 Dx)2 .
2 16Hj23 1 Hj24 ].(3.5)

This approximates the advection term b­x h in (3.4) with Therefore, due to the presence of the stiff relaxation term
a central difference plus a first-order numerical dissipation in (3.3), these upwind type schemes at the relaxation level
with a viscosity coefficient of c(D x/2)­xx h. Indeed, an up- do not agree with the upwind schemes to the reduced
wind scheme applied directly to parabolic equation (3.4). Similar observations were made

by Pember [39]. Also, if one uses coarse grids, the leading
numerical dissipation, as discussed for the telegraph equa-­th 1 b­x h 5 0,
tions, may dominate the physical dissipation.

which is (3.4) without the diffusion term, would give the
3.2. A Modified Flux for the Nonlinear Modeldifference equation

We seek robust schemes for these problems that possess
the following properties. First, in the nonstiff regime they­tHj 1 b

Hj11 2 Hj21

2 Dx
5 ubu

Hj11 2 2Hj 1 Hj21

2 Dx
. (3.6)

should be a high-order shock-capturing scheme that can
properly capture the discontinuous features of the solution.
The higher order Godunov schemes are already extremelyIf one compares (3.6) with (3.5) (without the last term)
well suited for this task. Second, when the relaxation termthen one finds that discretization (3.5) of Eq. (3.4) contains
becomes stiff, these schemes should have a long-time be-more numerical dissipation (having a viscosity coefficient
havior that are consistent and stable discretizations to theof c Dx/2) than the upwind scheme (3.6) (having a viscosity
convection–diffusion equation. Moreover, we want thecoefficient of ubuDx/2, where ubu , c).
long-time convection discretization to be also a GodunovSimilarly, the long-time behavior associated with the
type scheme to the reduced convection term. Similar at-van Leer scheme for (3.3) is governed by
tempts were made in [39]. Third, in the regime where the
parabolic term becomes important (over the longer time

­tHj 1 b
2Hj12 1 6Hj11 2 6Hj21 1 Hj22

8 Dx scale), the schemes should capture the correct long-time
behavior, just as discussed in the last section.

More specifically, we seek the long-time approximation
5 2c

Hj12 2 4Hj11 1 6Hj 2 4Hj21 1 Hj22

8 Dx of (3.2a) in the form
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schemes based on the solution of the Riemann problem
­tHj 1

f(Hj11/2) 2 f(Hj21/2 )
Dx of (3.9). The weight function aj11/2 5 a(Pe) introduced in

(3.12) lies between 0 and 1 and will be chosen to depend
5

t

Dx2 (p9(Hj11/2 ) 2 f 9(Hj11/2 )2)(Hj11 2 Hj ) (3.8) on the local Peclet number Pe 5 Dx/ct, where c 5 cj11/2

is the local maximal characteristic speed of (3.1):
2

t

Dx 2 (p9(Hj21/2 ) 2 f 9(Hj21/2 )2)(Hj 2 Hj21),

cj11/2 5 Ïp(H (1)
j11/2). (3.14)

where the edge fluxes Hj11/2 are defined by a higher order
Godunov scheme (vL or PPM say) through the solution For this modified set of nodal values, the numerical flux
of the Riemann problem of the leading hyperbolic convec- for system (3.1) becomes
tion equation

Wj11/2 5 aj11/2W
(1)
j11/2 1 (1 2 aj11/2)f(H (2)

j11/2)­th 1 ­x f(h) 5 0. (3.9)

1 (1 2 aj11/2)
t

Dx
(p9(H (2)

j11/2) (3.15)It is clear that (3.8) is a good approximation of the non-
linear convection–diffusion equation (3.2a); the main ques-

2 f 9(H (2)
j11/2)2)(Hj11 2 Hj ),tion is how a numerical scheme for (3.1) can pass to the

scheme (3.8). Hj11/2 5 H (1)
j11/2 .

Suppose the numerical scheme for (3.1) has the form

Such an approach is a generalization of the piecewise
­tHj 1

W (1)
j11/2 2 W (1)

j21/2

Dx
5 0, (3.10a) steady approximation and the modified upwind scheme.

We will abbreviate this scheme as MvL if H (1)
j11/2 , H (2)

j11/2 ,
W (1)

j11/2 and W (2)
j11/2 are defined by the van Leer flux, and

­tWj 1
p(H (1)

j11/2) 2 p(H (1)
j21/2)

Dx
5 2

1
t

(Wj 2 f(Hj )), (3.10b)
MPPM if they are defined by the PPM flux. The weight
factor a(Pe) should be such that when the Pe is small (for
fine grid), it recovers the higher order Godunov schemewhere the edge values W (1)

j11/2 and H (1)
j11/2 are defined by

(3.10); when the Pe is large (coarse grid) it leads to schemehigher order Godunov schemes using the solution of the
(3.8). So at a minimum, it is natural to requireRiemann problem of the p-system,

­th 1 ­xw 5 0,
(3.11)

lim
PeR0

a(Pe) 5 1; lim
PeRy

a(Pe) 5 0. (3.16)

­tw 1 ­xp(h) 5 0.

In so doing, the fluxes defined in (3.15) yield correct asymp-Left unmodified, as Pe R y, the solutions of this scheme
totic properties for both fine and coarse grids.will behave like those of a central-difference scheme for

Because there are many choices of a that satisfy these(3.2a) just as described through the linear model. Rather,
conditions, a good choice will be one such that in thewe wish to modify the edge values so that the solutions
intermediate regime when Pe p 1 the asymptotic behaviorbehave like those of the differencing scheme (3.8).
of scheme (3.15) approximates system (3.2) as accuratelyWe propose to incorporate the asymptotic behavior of
as possible. In order to find an appropriate form for a we

w in (3.2b) into the new nodal values through the simple in-
apply flux (3.15) to solve the linear system (3.3).terpolation

For example, applying the MvL to the linear system
(3.3), one can obtain the following long-time behavior

Wj11/2 5 aj11/2W (1)
j11/2 1 (1 2 aj11/2)W (2)

j11/2 ,
(3.12) when Pe 5 Dx/ct R y (without loss of generality we

assume that b . 0 here):Hj11/2 5 H (1)
j11/2 ,

where W (2)
j11/2 is the numerical analog of (3.2b) given by

­t Hj 1 ab
2Hj12 1 6Hj11 2 6Hj21 1 Hj22

8Dx

W (2)
j11/2 5 f(H (2)

j11/2 ) 1
t

Dx
(p9(H (2)

j11/2) 2 f 9(H (2)
j11/2)2)

(3.13) 1 (1 2 a)b
Hj11 1 3Hj 2 5Hj21 1 Hj22

4Dx
(Hj11 2 Hj ),

5 2ac
Hj12 2 4Hj11 1 6Hj 2 4Hj21 1 Hj22

8Dxand H (2)
j11/2 is defined by the same higher order Godunov
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(3.15) becomes a better approximation to difference
1 at(c2 2 b2)

1
8Dx2 [Hj14 2 12Hj13 1 36Hj12 1 12Hj11 scheme (3.8) for (3.2a). So for the weakly nonlinear regime

one just needs cells fine enough to maintain the accuracy
2 74Hj 1 12Hj21 1 36Hj22 2 12Hj23 1 Hj24] of (3.8) without worrying about t.

We should point out that the linear interpolation (3.12)
1 (1 2 a)t(c2 2 b2)

Hj11 2 2Hj 1 Hj21

(Dx)2 . might not be the optimal choice. It is still an open question
to determine the best way to incorporate the two numerical
fluxes [39]. However, we believe that the linear interpola-This discretization has the modified equation
tion is a reasonable choice. First, it is a convex combination
of the two fluxes. If both fluxes are total-variation-dimin-­th 1 b­xh 5 t(c2 2 b2)­xxh 2 !k ac(Dx)3­xxxxh

(3.17) ishing (TVD) or essentially non-oscillatory (ENO) then
2 aQs t(1 2 a)(c2 2 b2)(Dx)2­xxxxh such a convex combination possesses the TVD or ENO

property and no new oscillations should be generated by
after ignoring the dispersive errors and other higher order this interpolation. Second, although one might suspect that
terms. (The MPPM gives a similar modified equation mod- the scheme may reduce to a lower order method in the
ulo a different dispersion error and some constant coeffi- intermediate regime when Pe p 1, based on the results in
cients). Here we have ignored higher order terms, as well [17] for the linear numerical transport schemes in diffusive
as the third order, dispersive terms since our goal is to regimes, we conjecture that such a modification still main-
eliminate the unphysical numerical dissipation instead of tains a uniform convergence (with respect to Pe) to the
the numerical dispersion error. We want to choose a so solution of the relaxation system (3.1). Third, since the
that the numerical dissipation (the second and third terms function a rapidly makes the transition from its coarse
in the right side of (3.17)) becomes much smaller than the gird behavior (3.18) to its fine grid value of 1, such an
physical dissipation t(c2 2 b2)­xxh. Because the last term interpolation is of high order accuracy for most values
in (3.17) is in the order of t(Dx)2, which has a higher order of Pe. The drawback of this interpolation is that in the
than the physical dissipation term appearing in the first intermediate regime it may not be an upwind scheme with
term of the right side of (3.17), the best one can do is to respect to the local equilibrium equation (3.2a). So far we
match the order of the second term on the right of (3.17) have not been able to construct a scheme that is upwind
with the last term. So we set for all range of Pe.

3.3. Numerical Resultsac(Dx)3­xxxxh p t(1 2 a)(c2 2 b2)(Dx)2­xxxxh.

We first examine a problem in the regime where the
Because 0 # a # 1, a choice of a will be long-time behavior is important. Consider a p-system over

the interval [0, 1] given by

a p
ct

Dx
5

1
Pe

. (3.18)
­th 1 ­xw 5 0, (3.21a)

Roughly speaking, a should depend linearly on the recipro- ­tw 2 ­x S 1
h2D5 2100(w 2 0.01(h 2 2)2). (3.21b)

cal of Pe. A good candidate that depends smoothly on Pe is

Its long-time behavior is described bya 5 tanh(1/Pe), (3.19)

because
­th 1 0.01 ­x(h 2 2)2 5 0.01 ­xFS 2

h3 2 0.0004(h 2 2)2D ­xhG,

(3.22a)tanh S 1
PeD5

1
Pe

1 O S 1
Pe3D, if Pe @ 1;

Utanh S 1
PeD2 1U# 2 exp S2

2
PeD, if Pe ! 1.

(3.20)
w 5 0.01(h 2 2)2 2 0.01 S 2

h3 2 0.0004(h 2 2)2D ­xh.

(3.22b)
With this choice of a the numerical dissipation becomes

The initial conditions for this problem areof order c2t(Dx)2 uniformly in Dx and t so the physical
dissipation always dominates. Also it can be observed from
(3.15) and (3.20) that, as one increases Pe, the scheme h(0, x) 5 2 1 sin(fx), w(0, x) 5 20.01, (3.23)
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parabolic equation (3.22a). Also PPM (or MPPM) per-
forms slightly better than vL (or MvL) because it is one
order higher in accuracy. This example shows that the
modified schemes are good in reducing the numerical dissi-
pation in the weakly nonlinear limit with large Pe numbers.

We next test a problem in its strongly nonlinear regime
so that the leading convection term dominates, with a
thin viscous layer. We would like to see how the modified
schemes perform in the intermediate regime where Pe p
1. We consider the p-system (3.1) over the interval [20.5,
1.5] with p(h) 5 !sh2 1 h and f(h) 5 !sh2:

­th 1 ­xw 5 0, (3.24a)

­tw 1 ­x(!sh2 1 h) 5 2100(w 2 !sh2), (3.24b)

The parabolic equation (3.2a) in this case is just

­th 1 ­x(!sh2) 5 0.01 ­x[(1 1 h 2 h2)­xh]. (3.25)

The initial conditions are taken to be

h(0, x) 5 H1 for 20.5 , x , 0.2,

0.2 for 0.2 , x , 1.5,
w(0, x) 5 0. (3.26)

The reflecting boundary conditions are applied. The exact
solution to this problem is a shock layer moving to the
right with a speed of 0.6. If Pe @ 1, then all schemes
give sharp, underresolved shock profiles without numerical
oscillations. The transition across the shock take two to
three spatial grid points, which captures only the leading
behavior without resolving the viscous layer. In Fig. 3, weFIG. 2. Comparisons of high order Godunov methods and their modi-
choose 150 cells over [20.5, 1.5]. Then Pe ranges betweenfications with the ‘‘exact’’ solution (solid lines) of (3.21) and (3.23) at t 5

0.9428 and 1.2172, which is in the intermediate regime. We10 for Dx 5 0.1 and t 5 0.01. In this example Pe ranges between 20 and
36.7423. The ‘‘exact’’ solution is obtained with PPM by taking Dx 5 0.001. depict the results at t 5 0.5 and t 5 1.0 in [20.2, 1] to focus
Upper: vL (1) and MvL (o) vs exact. Below: PPM (1) and MPPM (o) on the viscous shock profiles. The ‘‘exact’’ solution was
vs exact.

obtained with PPM by taking Dx 5 0.001. All the schemes
give comparable results, showing that in the intermediate
regimes the MvL and MPPM are quite comparable to their

and the boundary condition is periodic. Here t 5 0.01. unmodified counterparts. Thus our linear interpolation
The nonlinear convection and the diffusion terms in (3.22a) (3.12) does not seem to downgrade the quality of numerical
are of the same order so that the spatial derivatives of the results even in the intermediate regimes.
smooth solution should be of order 1. In this problem the
maximal characteristic speed c 5 supÏ2/h3 ranges from

4. GENERAL 2 3 2 SYSTEMS AND0.2722 to 0.5. We choose Dx 5 0.1; thus Pe ranges from
THE RIVER EQUATIONS20 to 36.7423. The results at t 5 10 are depicted in Fig. 2,

with the ‘‘exact’’ solution obtained by PPM with Dx 5
4.1. General 2 3 2 Systems

0.001. Both vL and PPM dissipate so fast that they do not
capture the correct physical dissipation at all. The MvL In this section we want to show how to generalize the

modified Godunov schemes presented in the last sectionand MPPM, however, give a much more accurate dissipa-
tion rate in this coarse regime. For smooth solutions, MvL for the 2 3 2 p-system to more general 2 3 2 systems of

the formand MPPM give second- and third-order accuracy to the
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in (4.1b) and holding h fixed. When this is the case, w 5
e(h) satisfies

l(h, e(h)) 5 0, ­w l(h, e(h)) . 0. (4.3)

Furthermore, assume that the two equations in (4.1) are
coupled such that

­w f1(h, e(h)) ? 0. (4.4)

Clearly, these assumptions are satisfied when the system
(4.1) is specialized to the p-system (1.3) considered pre-
viously.

The parabolic approximation for system (4.1) is the sca-
lar convection–diffusion equation [7]

­t h 1 ­x f(h) 5 ­x[g(h)­x h], (4.5)

with flux f(h) ; f1(h, e(h)), and diffusion coefficient

g(h) ; ­w f1(­h f2 2 (­h f1 2 ­w f2 )e9 2 ­w f1(e9)2)
­w l U

w5e(h)
.

The characteristic velocity associated with (4.5) when « 5
0 is

l(h) ; f 9(h) 5 ­h f1(h, e(h)) 1 ­w f1(h, e(h))e9(h),

and the stability criterion for (4.5) is

L2(h, e(h)) # l(h) # L1(h, e(h)), (4.6)

where L6 are the characteristic velocities (4.2) of systemFIG. 3. Comparisons of high-order Godunov methods and their modi-
(4.1). The relation of this condition to the nonnegativityfications with the ‘‘exact’’ solution (solid lines) of (3.24) and (3.26) at

t 5 0.5 and t 5 1.0 for t 5 0.01, Dx 5 0.0133. In this example Pe ranges of the diffusion coefficient (4.6) is manifest from the fact
between 0.9428 and 1.2172. The ‘‘exact’’ solution is obtained with PPM [7] that
by taking Dx 5 0.001. Upper: vL (1) and MvL (o) vs exact. Below: PPM
(1) and MPPM (o) vs exact.

g(h) 5
(L1(h, e(h)) 2 l(h))(l(h) 2 L2(h, e(h)))

­w l(h, e(h))
.

­th 1 ­x f1(h, w) 5 0, (4.1a) Finally, as with system (1.3), a spatially homogeneous equi-
librium of the system (4.1) in the form (h, w) 5 (h, e(h))

­tw 1 ­x f2(h, w) 5 2l(h, w). (4.1b)
for any constant h is stable if and only if h 5 h satisfies (4.6).

In this problem the relaxation time t and the characteris-
This system is assumed to be strictly hyperbolic with real tic variable c as
and distinct characteristic velocities given by

t(h) 5
1

­w l(h, w)Uw5e(h)
,

(4.7)L6 5 !s(­h f1 1 ­w f2 6 Ï(­h f1 2 ­w f2 )2 1 4­w f1­h f2). (4.2)

c(h) 5 maxhuL1(h, w)u, uL2(h, w)ujU
w5e(h)

.
Assume for each h there exists a unique linearly asymptoti-
cally stable equilibrium w 5 e(h) of the ordinary differen-
tial equation obtained by neglecting the spatial derivatives The local Peclet number is then
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­t h 1 ­x(hu) 5 0,
(4.15)Pe(h) 5

Dx
c(h)t(h)

. (4.8)

­t(hu) 1 ­x(hu2 1 !sgh2) 5 sgh 2
r
4

uuuu,
Assume that the unmodified numerical scheme for system
(4.1) is

which is a shallow water model describing the depth h and
mean velocity u of a river. Here g . 0 is the magnitude
of gravitational acceleration, s is the slope of the river­t Hj 1

f1(H (1)
j11/2 , W (1)

j11/2 ) 2 f1(H (1)
j21/2 , W (1)

j21/2 )
Dx

5 0,

(4.9)
bottom, and r is a phenomenological drag coefficient. Sys-
tem (4.13) is genuinely nonlinear and strictly hyperbolic

­tWj 1
f2(H (1)

j11/2 , WH (1)
j11/2 ) 2 f2(H (1)

j21/2 , WH (1)
j21/2 )

Dx with characteristic velocities

5 2l(Hj , Wj ), L6 5 u 6 Ïgh. (4.16)

where the nodal values H (1)
j11/2 and W (1)

j11/2 are defined by The local relaxation approximation is identified with the
some higher order Godunov scheme based on the Riemann behavior of solutions of (4.15) over long space and time
problem of the hyperbolic conservation law scales such as those associated with the description of

flooding. The parabolic behavior is governed by [7]
­t h 1 ­x f1(h, w) 5 0,

(4.10)
­tw 1 ­x f2(h, w) 5 0.

­t h 1 ­x (Ï4sg/r h3/2) 2 ­x FÏsg/r S1
s

2
1
rD h3/2­xhG5 0,

In order to recover the correct long-time behavior, we
(4.17a)modify the scheme (4.9) like we did to get the modified

upwind scheme for the p-system. Specifically, let the nu-
u 5 Ï4sg/r h1/2 2 Ïsg/r S1

s
2

1
rD h1/2­x h, (4.17b)merical fluxes be

f1, j11/2 5 aj11/2 f1(H (1)
j11/2 , W (1)

j11/2 ) 1 (1 2 aj11/2 ) f(H (2)
j11/2 )

provided the slope and drag satisfy r . s, which is just the
2 «(1 2 aj11/2 )g(H (2)

j11/2 )(Hj11 2 Hj ), (4.11a) stability condition (4.6).
The modified numerical flux for system (4.17) is given by

f2, j11/2 5 f2(H (1)
j11/2 , W (1)

j11/2 ), (4.11b)

(HU)j11/2 5 aj11/2H (1)
j11/2U (1)

j11/2 1 (1 2 aj11/2 ) Ï4sg/r H (2)3/2

j11/2where the new nodal values H (2)
j11/2 are defined by the same

kind of Godunov scheme as in (4.9), but using the solution
2 Ïsg/r S1

s
2

1
rD 1 2 aj11/2

Dx
H (2)3/2

j11/2(Hj11 2 Hj ),of Riemann problem for the scalar conservation law

­t h 1 ­x f(h) 5 0. (4.12) (4.18)

In (4.11) a plays the same role as it did for the p-system. where H (1)
j11/2 and U (1)

j11/2 are given by a higher order Godu-
In particular, we again choose a to depend on the local nov scheme using the solution of the Riemann problem of
Peclet number as the shallow water equations

­t h 1 ­x(hu) 5 0,
(4.19)aj11/2 5 tanh S 1

Pej11/2
D , (4.13)

­t(hu) 1 ­x(hu2 1 !sgh2) 5 0,

where Pe is defined in (4.8) with where H (2)
j11/2 is given by the same Godunov scheme for

the solution of Riemann problem of the scalar conserva-
cj11/2 5 c(H (1)

j11/2 ), tj11/2 5 t(H (1)
j11/2 ). (4.14) tion law

4.2. Application to the River Equations ­t h 1 ­x (Ï4sg/r h3/2) 5 0. (4.20)
An example of (4.1) system that we will use to numeri-

cally test our method is the idealized river equations [43, In this system the relaxation time and the characteristic
variable are given by48]
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t(h) 5 Ïh/rsg, c(h) 5 S4s
r

1 1DÏgh,

which follows from the general definition given in (4.7).
The weight factor a is defined in a similar manner as in
(4.13).

Remark. One can also define c as the maximal eigen-
value. However, our numerical experiments showed little
differences between these two choices.

We first test these schemes in regimes where the long-
time behavior becomes important. We choose the initial
conditions

h(0, x) 5 1 1 0.95 sin(fx), w(0, x) 5 0, (4.21)

for x [ [0, 1] with periodic boundary conditions and r 5
1000, s 5 5, g 5 1. For this problem c ranges between
1.1414 and 1.6142. We compare these schemes by choosing
Dx 5 0.1, which gives a Pe ranging between 3.0975 and
6.1950. The results at t 5 1 are depicted in Fig. 4. The
‘‘exact’’ solution is computed with PPM by taking Dx 5
0.001. One can see that vL and PPM decay very rapidly
while MvL and MPPM decay at speeds a lot closer to the
physical one.

Finally we test the schemes for a problem in its strongly
nonlinear regime with a thin viscous shock layer. Using
this problem we test the performance of the modified
schemes in the intermediate regimes. We choose r 5 400,
s 5 100, and g 5 1. The initial condition is chosen to be

h(0, x) 5H1 for 0 , x , 0.5,

0.2 for 0.5 , x , 1,
w(0, x) 5 0. (4.22)

FIG. 4. Numerical vs exact solution of the river equations (4.14) and
(4.21) at t 5 1. Our ‘‘exact’’ solution (the solid lines) is obtained by PPM
with Dx 5 0.001. Numerical solutions are obtained with Dx 5 0.1. In thisWe apply reflecting boundary conditions. In this problem
example Pe ranges between 3.0975 and 6.1950. Upper: vL (1) and MvLthere is a thin viscous shock layer moving to the right. If
(o) vs exact. Below: PPM (1) and MPPM (o) vs exact.Pe @ 1 then all schemes give underresolved, non-oscillatory

shock profile within two to three spatial cells. The physical
viscous layer cannot be resolved in the coarse regime. To

systems with stiff relaxation terms. These methods aresee the behavior of these schemes in the intermediate re-
based on the asymptotic analysis of the long-time behaviorgime, we use 200 points on [0, 1]. Then Pe ranges between
of the solution that shows a balance between the relaxation0.5 and 2.5. The results at t 5 0.25 are depicted in Fig. 5.
terms and spatial derivative terms. Although we carry outThe ‘‘exact’’ solution was obtained with PPM for Dx 5
our analysis and numerical experiments on simple 2 3 21023. It can be seen that all four schemes give comparable
systems here, the spirit of the analysis extends to moreresults which correctly resolve the physical viscous layer.
complicated systems such as those mentioned in the begin-Thus the modified schemes also give satisfactory results
ning of the introduction. In particular, these ideas may(comparable to the unmodified ones) in the intermedi-
be helpful in numerically understanding kinetic equationsate regimes.
close to their macroscopic limit described by either the
Euler or Navier–Stokes equations [2–4, 33].5. CONCLUSIONS

We have only examined semidiscrete schemes in this
article; the time steps in our numerical experiments beingWe have introduced a modification of Godunov schemes

that gives the correct long-time behavior for hyperbolic small enough so that no new errors were introduced to
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